MEMORANDUM
10/8/94 - 10:02 AM

AlTo De/From Jean-Michel Marcastel
Empfanger Absender

Copie/Copy Date Saturday, October 8, 1994
Abschrift Datum

Objet InterStage

Betreff

Introduction:

InterStage is both a developement toolkit and a run-time environment. The
development environment allows users to create applications that can be run over
distributed systems using InterStage run-time environment. In turn the InterStage
run-time environment is intended to replace the need for the use of RPC. One
further advantage of using the InterStage run-time system is that it allows all
system configuration to occur at run-time instead of at design time. It also allows
the users to reconfigure the system while it is running; this is a feature not availible
to users of the RPC model. InterStage is a system that allows users to easily create
applications to take full advantage of all of UNIX's networking and concurrency
abilities.

The InterStage development kit provides programmers with an easy way to create
application’s designed to be run over a network. It does this by separating a
systems application specific functionalities from its lower level properties. All the
properties allowing the application over to run over the network are handled by the
run-time Kit. This allows the programmer to design his applications as if it would
run on a single machine and would handle requests sequentially rather than
simultaneously. In order to run the application over a distributed system the
programmer simply decides of a way of handling load distrubution and uses the
appropriate parts of the InterStaga AP1.With the RPC model the programmer had to
be aware that the application would be run on a distributed system while he
created the application code.

Programming in InterStage requires a design approach different from the approach
used with standard procedural or Object Oriented languages. While InterStage
uses a object oriented/procedural language,C++, as its platform, conceptually the
structure of an InterStage program is very different from the structure of a C++
program..InterStage programming is similar to co-routine programming in that, a
program is divided up into a set of independent tasks that pass data around and
are executed according to a schedule that is set at run time. InterStage uses the
network capabilites of UNIX to handle the data passing instead of using shared
memory locations and function calls to control program flow, the way co-rotine
programming does. InterStage als takes the co-rotine concept one step further by
allowing the tasks to run concurrent lyand to run using independent system
resources.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 1

Memorandum (10/8/94 10:02 AM) InterStage

InterStage applications are signified by two major concepts the method and the
agent. A method is an abstraction of a procedure. It is a piece of code that
performs some functionality. An agent is a process that has the ability to handle
certain methods. This is an extension of object oriented concepts, but where object
oriented concepts associate data with methods, an agent in InterStage associates an
individual UNIX process with a method. Agents have the ability to communicate
with each other by means of message passing. In general, message passing involves
a request to invoke a method of another agent as well as any data that the method
might need to perform its functionality. In InterStage message passing occurs in
pairs; there is a request and a reply. This has a direct analogy to functional
programming in that a request contains the name of the method to invoke and the
formal parameters of a function, and the reply contains the return values of the
function. A reply may contain any number of variables. This is necessary because,
unlike standard programming where a function may have the ability to change the
value of a parameter outside the scope of the function, variables in InterStage have
a scope local to any given agents. The only way for different agents to share data is
to send it in as messages.

InterStage Paradigm:

An essential philosophy in InterStage is that the application should be independent
of hardware. The InterStage paradigm requires that an application run equally as
well on a single machine as it would if its processes were spread over a group of
LANs. This requires that the fact that an application is run on a single machine, a
local area network, or distributed over a group of local area networks be completely
transparent to the application. The InterStage developers Kit, through its API,
contains tools that provide the application programmer a simple way of making the
network configuration transparent to an application. The only additional work
required of the programmer is to decide on a overall strategy for dealing with a
network configuration, allowing him to choose the proper tools in the InterStage
API.

InterStage is by its nature an object oriented system. Much of the terminology that
applies to object oriented programming applies to InterStage. While programming,
one creates agent types which encompass the possible states an agent can be in as
well as the types of requests that it can service. At run time one instantiates using
the InterStage run time facilities. Like object oriented programming languages,
InterStage enables the use of inheritance and polymorphism but there is no
standard implementation for using these things.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 2

Memorandum (10/8/94 10:02 AM) InterStage

The object oriented nature of InterStage gives rise to two general types of agents:
agents whose instances are identical and agents whose instances may be in
different states. Agents with identical instances are the easiest to deal with; an
agent needing a service provided by another agent that has many instances can
send its request to any agent that exists. The use of this type of agents is primarily
for load distribution and as such it is probably best to choose randomly from the
list of instances that are in existence at any given time. An agent might also choose
an instance based on other factors such as instance location or the load on an
instance, although keeping track of the load on an instance is likely to add
significant overhead to an application.

Agents whose instances are allowed to have different states are best used as
dedicated agents. These agents should be dedicated to some other part of the
system, such as another agent or to devices like printers and storage devices. By
dedicating agents to other agents one can increase the efficiency of a process by
utilizing concurrency, although concurreny in individual functionalities can be also
be handled without the use of dedicated agents By dedicating agents to certain
devices it is possible to implement a type of polymorphism where similar agents
handle identical method types with different implementations. This would provide
the programmer with a common public interface for different types of devices. For
instance, it is possible to implements different storage strategies by using two
different instances of one agent type to handle the different types of storage.

In order to facilitate the use of dedicated agents, a strategy for implementation must
be developed because InterStage does not provide any predefined tools for this type
of programming. One possible strategy would be to create an agent type with
identical instances that would keep track of the dedications of each instance. This
method is not perfect because there must be updates given to the managing agent
and in a large system this can be quite time consuming. Another problem with
implementing some types of dedicated agents is that it goes against the philosophy
that the application should be independent of the configuration of the network.
(Although this requirement is not essential to the creation of a functioning
application, adhering to it as strictly as possible allows for the most flexibility at
installation and run time)

Another major component of the InterStage paradigm is the fact that all
applications are event driven. This means that code is executed because of the
occurrence of events. The most important event in InterStage is the arrival of
messages. This event trigger an agent to execute code that deals with the message.
The application programmer is free to define other event types that will cause an
agent to execute a piece of code. This style of programming is very different from
standard functional programming and force the application writer to think in terms
of chains of events.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 3

Memorandum (10/8/94 10:02 AM) InterStage

Concurrency In InterStage:

There are fundamental diffuculties with using concurency in applications. Most
notable is the problem of schedualing the execution of task in a concurrent system.
Many different stratagies have been proposed to deal with this problem. InterStage
uses the stragagy provide by the ACTOR model of concurrent computation which
involves treating a computation as a chain of events. In essense the system
schedules it self as a computation evolves. In InterStage communications occur in
pairs which allows an agent to know when a request has been fulfilled. This fact is
essential to chain of events concept. An agent starts a chain of events by sending a
message or messages and then waits for a reply before it continues. Whenever an
agent receives a message does whatever processing it can do (not concurcently) and
sends requests for more services. It can then wait for a reply before continuing.

This model of computation structures the chain of events into a tree, with agents at
the nodes of the tree and messages as the connection.. Each agent need only know
about the agent who sent it the request, its parent in the tree, and the agents to
which it sends requests, its chideren. Like any tree, this sort of communication
tree is highly recursive; each node becomes the top of new tree and the top of a
new chain of events. A message starts at the top of a tree and propagates down the
tree until it reaches a terminal node where a chain of reply is begun. An agent will
only send a reply when all its requests have been filled. This implies that
scheduling need only be delt with at the agent level; the global notion of
schedualing is represented by a chain of events. Each agents simply decides wether
its need are best handled sequentually or simultaneoulsy and send its requests
accordingly.

There is no reason that trees need be the only model of a computation. Other types
of graphs will also suffice. But, while a send - reply concept is all that is need for
scheduling with trees as a model, an additional device for scheduling is needed if an
agents is to receive information from two different agents. This type of model also
requires that agents now about the overall structure of the graph because two
agents working on the same computation need to agree on a particular instance to
which to send their results. Allowing a general graph as a model is not strictly
necessary since all graph (I believe) can be mapped onto a tree that will visit every
node of the graph, a graph to be better able to express a computation than a tree is
some cases.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 4

Memorandum (10/8/94 10:02 AM) InterStage

These two types of concurrencies may not work well together, because of the fact
that system configuration occurs at run time. The second type of concurrency
requires that certain agents be dedicated to each other so that one calculation is
carried out by a group of agents while the first type of concurrency requires that
there be repetition of agents to help to distribute the load of multiple, identical
requests. The run time facilities of InterStage support configuration at the agent
level, not at the level of groups of agents and some of the most obvious strategies for
load distribution involve sending messages to random instances of an agent type.
This will create problems with the use of agents that are dedicated to each other.
The ability to dedicate agents to one another is enabled by InterStage but it is not
supported; it also may be very difficult to accomplish agent dedication.

Anatomy of an Agent

At its most basic level an agent is just an object with a state and a list of methods.
This state usually consists of a list of agents to which an agent can send messages
as well as any agent specific state variables. An agent also contains facilities to
accommodate a global message service. These facilities include a signal handler
and an event scheduler. The signal handler handles UNIX signals and any agent
can choose a subset of signals in which it is interested. In general the signal
handler creates events in response to signals, and the event scheduler executes the
events in the proper order. 1/0 signals, which inform the agent about the arrival of
messages, are the most important signals, and, as such, an agents contains a list of
the message types that it is capable of handling. Agents also contain code to be
executed at startup and code that is executed at shutdown. The startup code can
be used to start a chain of events.

Anatomy of an InterStage System:

An InterStage system consists of two separate parts: a user created application and
a run-time system configuration. The user created application consists of a set of
agent types. Each agent type handles a certain set of messages and a certain set of
signals. The standard system configuration consists of one instance of a specialized
agent type running on each machine. These specialized agents are responsible for
instantiating the user defined agent types and for updating each agent instance
about the current state of the overall system. The application programmer uses the
InterStage API to connect these two separate parts.

InterStage API:

Note: This is only a brief introduction to the APIl. For a more complete description
refer to the InterStage 2.1 Developers Guide.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 5

Memorandum (10/8/94 10:02 AM) InterStage

An agent consists of the one instance of the BServiceObject type. This type gives the
agent its behavior as an agent . Within the BServiceObject type, the InterStage API
can be divided into two parts: InterStage facilities, and application specific
facilities. The InterStage facilities are used to connect the application to the run-
time InterStage system, which consists of a specialized agent, the mdbind agent,
that keeps track of configuration of the system on the network. These facilities
consist of three major functions. There exists a function, bindRegisterClass(), that
is used to tell an mdbind agent the what type of agent an instance is. There is
another function bindExpressinterest() that is used to tell mdbind that it would like
to receive update about all instances of a certain agent type. Both these functions
accept a string as an argument and this string should be a unique string used to
identify the agent type. Finally there is a classChangeCallback() function. This
function is called every time a change occurs in mdbins's global database. This
function should be used to organize the agent's own personal database.

InterStage provides a routine and a class to facilitate the application specific
message passing. There is a BServiceObject method dispatchRequest() which is used
to determine how an agent will handle an incoming request, and there is the
BDialogue class which is used to handle the actual message. The dispatchRequest
method accepts an unsigned int, which represents the name of the request, as it
argument and returns a BDialogue that is capable of servicing the request.

The BDialogue class has four methods that allow requests to be serviced. These
methods exist in pairs. The first pair is the handleRequest() - sendReply() pair. Its
function is to deal with incoming requests to an agent. HandleRequest accepts a
request code, and a message in the form of an array of BER data structures and an
integer representing the number of items in the array. The handle request method
should do all of the processing to the method and issue an sendReply command
with the return message. The other pair is the sendRequest () - handleReply() pair.
This pair is used for the agent to send messages to other agents. The send request
method accepts an agent address, this should be retrieved from the agent's
personal communication list, and a message consisting of a request code, some
BER data and an unsigned int representing the number of data items sent. The
programmer can use the handleReply() method, which accepts the same parameters
as the handleRequest() method, to do any processing that needs to be done on the
reply data.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 6

Memorandum (10/8/94 10:02 AM) InterStage

A BDialogue can only handle one communication at a time. This means that a
different dialogue must be used for each incoming communication and a dialogue
must wait for a reply to its requests before it generates another request. The easiest
way to enable an agent to deal with multiple identical requests is to generate a new
dialogue for each incoming request. This requires the use of additional memory for
each request, and while each dialogue is a transient object, in a system where
agents handle large numbers of requests this may not be an efficient solution.
InterStage provides a flow of control method, the busy method to allow the agent to
block a request. If an agent on allows itself to handle a fixed number of requests of
any give type at a certain time, it can tell other agents that it is busy. An agent that
receives a busy signal will hold the message and try again at a later time.

In order for a dialogue to make to multiple requests simultaneously it must create a
sub-dialogue for each request. There are no standard facilities to accomplish this.
The best way to handle sub-dialogues is to pass the constructor a pointer to the
parent dialogue. The sub-dialogue can then inform the parent dialogue when it has
finished and the parent dialogue can keep track of all the sub-dialogues and wait
until all have finished to continue.

InterStage provides a compiler that facilites the generation of BER data structures.
This complier translates ASN.1 code into C++ code. It generates both a header file
which can be included in the files that use the data types, and a source file that can
be compiled and linked to the agent code.

Using the InterStage API

Programming an agent involves two steps. The first step is deciding what requests
the agent will handle and how to handle those requests. This step is what makes
an agent unique and consists of four separate parts. The first part is registering the
agent with the mdbind agent. The agent should use the bindRegisterClass() method
to tell the mdbind agent what class of requests it is able to handle. Often this step
is accomplished using the startup() method of the BServiceObject. The second step
is deciding the number of dialogue types that will be needed to handle all the
possible requests. Often it is easiest to create a separate dialogue type to handle
each different request. The third part is to write the dispatchRequest () routine.
This routine should return a dialogue of the appropriate type for any given request.
The fourth and most important part is to write each dialogue. This work consists of
writing a handleRequest() routine. If a dialogue needs services from other agents
the programmer may have to write a handleReply method to handle the replies to
its requests. If an agent needs to make requests of other agents the programmer
should have the handleRequest method call the SendRequest method and either the
handleRequest or handleReply should call the sendReply method to reply to the
initial request. Note that one will find nowhere in a programmers code a call to the
functions handleRequest of handleReply; the message service takes care of calling
these functions after the receipt of a SIGIO.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 7

Memorandum (10/8/94 10:02 AM) InterStage

The second step in creating a agent is to create the interface between the user's
agent and the mdbind agent. This only needs to be done if the agent is going to
sendRequests to other agents and is accomplished with the classChangeCallback
method. This is a method that is called by the message service whenever a change
in the global system configuration occurs. This method is passed a string and an
AddressGroup. The string is the name of the agent type for which the change has
occured and the AddressGroup is a list of all the instances of that agent type. In
order to inform mdbind that agent would like updates it calls the method
bindExpressintrest() with the name of the agent type about which it would like
information. The code in the classChangeCallback method should be written to
allow the agent to organize its own personal database of the agents that are in
existance.

Additional work must be done if an agent type is to be capable of communicating
with the outside world, i.e. human users or non-InterStage devices or programs.
This is made difficult by the nature of an event driven system. In an event driven
system, some outside source is needed to generate an initial event, and once this
initial event has been genterated it can be used to generate other events. Since
InterStage uses signals to generate events, the best way to interface InterStage to
the outside world is through the use of signals. In the case of a human interface
this is easily accomplished using Xt Intrinsics, because X servers will send SIGIO's
to a process on the occurrence of an event dealing with the X windows system. The
InterStage devopement kit provides a simple interface between the Xt Intrinsics and
the InterStage message service.

If one is not willing to use Xt Intrinsics, the human-InterStage interface becomes
more complicated. Without using the Xt Intrinsics, the easiest way to generate an
initial event it to use the startup method which generates a startup event. This
event can be used to other events by calling code that will send messages to other
agents thereby starting a chain of events. The problem with using this kind of
interface is that a program can only issue one request. This occures because once
an event, a startup event for example,begins to execute, no other events will execute
until that event finishes. This means that the startup event can not be used for
interactive communication since output generated by other events, in the message
service, will not be done until the startup routine is complete. In brief, any loop
placed used to generate repetitive requests, that is placed in an event, will make all
the requests before it will deal with any of the replies.

This problem is not as serious as it may sound for InterStage provides a facility for
generating command line programs. This facility is called the anonymous agent.
The anonymous agent is an agent that is started from the command line, not from
the mdbind agent. These agents are particularly well suited to handling single
requests because the user can use the UNIX shell to generate multiple requests.
Anonymous agents can also be used to start an Xt application that would allow the
user to make multiple requests.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 8

Memorandum (10/8/94 10:02 AM) InterStage

The Guts of an Agent:

Like any UNIX process, an InterStage process has both a signal handler and a main
thread of execution. The signal handler is used by the agents to communicate with
each other through the TCP or UDP communication protocols. When data is
received on in Internet port an a SIGIO signal is sent to the process that is listening
to that port. This SIGIO is caught by the agent signal handler and the agent's
signal handler decides what to do with the signal.

In order to connect the signal handler to the main thread, InterStage provides the
facilities of the MDriver object. An MDriver object, or an object derived from the
MDriver class, contains a list of signals that are interesting to it. An application
may contain any number of MDriver objects and may prioritize these use. When a
signal arrives all the interested MDrivers are polled in order of their priorities. The
MDriver class provides the poll method to accomplish this. The method is used to
generate MEvents , which are placed on the event queue by the event scheduler.
Once an event is enqueued it will eventually be executed in the main thread of
execution. This type of interface allows events to be generated asynchronously
while allowing the programmer to deal with each event as an atomic item, allowing
the programmer to let InterStage worry about the concurrency problems like
scheduling.

Every agent has at least one MDriver object. This is implimented by the fact that an
agent is an instance of a BServiceObject which inherits an MDriver object. In
actuality the BServiceObject is just a polite interface to the message service; most of
the message service work is carried out by the ServiceObject class which is
BServicesObject's superclass. The poll method of the MDriver class is a virtual
method so any class derived for MDriver must define its own poll method. The
ServiceObject's poll method is only interested in SIGIO which is used in message
passing.

Every agent has an internet port that it uses to send and receive messages. This
port is interfaced to the ServiceObject by the use of the FileRegister class which the
Service object inherits. Actually the class hierarchy is MDriver, FileRegisterBits,
which provides a low lever interface to file descriptors, FileRegister, ServiceObject,
and finally BServiceObject. (The class hierachy uses only single inheritance).

Flow of control in an InterStage application is through the use of events. Each
agent has a startup method which is used to generate a startup event. If an agent
wants to be at the top of the chain of command then it can use the startup method
to generate events in other agents by sending messages. Whenever a message is
received by an agent, ServiceObject's poll method instructs the agent to read the
data on the port by creating an MEvent that reads on either a TCP port or a UDP
port. This MEvent will create another MEvent that will deal with the message. It
the message is a request the dispatchRequest rouine is called and the MEvent will
allow the handleRequest method of the BDialogue to be executed. If the message is
a reply to a request then the MEvent will allows the handleReply method to be to be
executed.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 9

Memorandum (10/8/94 10:02 AM) InterStage

In order to generate events using Xt Intrinsics one has to use the XtObject class.
The constructor of this class takes the same parameters as the Initialze routine and
creates an application context and a shell that is used for the application. This
XtObject is derived from the MDriver , from the FileRegister class which is derived
from the MDriver class. This allows InterStage to catch any signals that are
generated by the X server inresponce to an X event. One can use the callbacks of
the the XtObject to send messages, thus allowing an XEvent to start a chain of
events.

Conclusions:

The InterStage system provides a novel approach to the design of distributed
systems. It completely separates application functionality from the underlying
network that the application is running on. Unlike traditional the traditional
programming techniques used to create applications on distributed systems,
InterStage doesn't require the programmer to know anything about the network
while writing the application, saving the programmer the extra time required to deal
with network configurations. InterStage also provide the user the ability to change
the configuration at any time during the application’'s execution. This can be done
by simply executing a few commands to the runtime system. The ability to
reconfigure a system while it is running is not available with the traditional
methods of programming on distributed systems.

InterStage also provides the programmer the ability to use concurrency afforded by
a UNIX system and to use all the resources provided by a distributed system. Being
able to use these types of resources requires little additional effort on the part of the
programmer; it is very easy to enable a program to take advantage of concurrency.

Moving from standard procedural programming to InterStage programming is not
very difficult. It requires that a programmer accept two new concepts. The first is
an object oriented concept. Instead of factoring a program into small functions
which have controlling functions, a programer utilizes the notion of objects
communicating with other objects. This switch is made easy by the InterStage
paradigm which treats concurrency as if it were a chain of events instead the
occurence of events that need to be scheduled by some outside source. The chain-
of-events concept can easily be translated to a functional model. The other major
concept that a programmer must accept is that all InterStage programs are event
driven. Execution occurs because of the occurance of evnets from something
external to the InterStage system.

Litton/MC2 - DOCUMENT CONFIDENTIEL
F2-46009 [Memorandum] Page 10

Figure 1

Client / Server

Client / Server Using RPC

Multi-client / Server Using RPC

~—

Client 2 is Blocked

Figure 2

Multi-Client / Multi-Server

Partitioned service domains can help partially, but,

since a server can not make blocking requests to another server....

....there is no way for the servers to coordinate.

Figure 3

Thread-Based RPC

Each RPC call generates
a "thread" (or lightweight process)
within the server process.

* Clients are still blocked unless the client is also multi-threaded.

However,

» Significant complexity is incurred in making these processes thread-safe.

Threads executed independently and

./<>\ are scheduled outside the control of
the programmer
Shared prog

Data

e Complex locking protocols must be devised
« Debugging significantly more complex

Figure 4

The Concept of an Agent

» Encapsulation of Data representation and Method Implementation at the process level
("large-grained objects").

» Network-wide provision of services, and usage of services, via methods

» Asynchronous message handling bid internally generated "dialogue” objects eliminate
blocking.

Symmetry Can act as either "Client" or "Server", thus supporting arbitrary
patterns of communication.

REQUEST

REPLY

PRIVATE
DATA

* In support of the 0-0 paradigm, apecialized agents can be derived from more generic
agents.

Figure 5

The Concept of a DIALOGUE

REQUEST

REPLY

» Dialogue objects represent an invocation of method.
» Dialogue objects retain the state required during the servicing of a request.

» If a dialogue must make use of external services it suspends itself to free the
agent to service other requests.

Figure 6

Dialogue use of External Services

________ REQUEST

M EXTERNAL
E REQUEST
T

H

o) REPLY

D

-
-

-
-

-

REPLY

TS,
{0y

Figure 7

Dialogue - Parallel use of External Services

e —————
~~~~~
-
-
-

PARENT
DIALOGUE
(RENDEZVOUS)

SUB-DIALOGUE

’

REQUEST

%
C
@
O
>
-
®)
@
C
m

RQST RQST

RQST

» A dialogue can invoke the services of other agents in parallel - if it is logically

appropriate

* The initial dialogue object creates sub-dialogue objects to manage this

i N

~



Figure 8

Arbitrary Patterns of Communication (1)

* In contrast to the client / Server model, distributed system design and

implementation can now take advantage of:

AGENT SYMMETRY

Request / Request /

Reply Reply

ASYNCHRONOUS HANDLINE

Request Request
1 2

PARALLEL REQUEST DISPATCH




Figure 9

Arbitrary Patterns of Communication (2)

* As a means of providing scalability and robustness, these features allow system
designs by more easily taking advantage of the following techniques:

- Partitioning

- Replication

USER
INTERFACE

USER
INTERFACE

USER
INTERFACE

REPLICATION DIRECTORY DIRECTORY DIRECTORY
PARTITIONING ’ ‘

DATA DATA DATA
SERVER SERVER SERVER



Figure 10

No Single Point of Failure

* The InterStage System lends itself to the design and construction of systems with no
single point of failure. For example:

USER USER USER

INTERFACE INTERFACE INTERFACE

FAX REQUESTS

CO-OPERATING
FAX QUEUE AGENTS

WORK REQUESTS

MODEMS MODEMS MODEMS



Figure 11

InterStage Supporting Infrastructure

» Distributed Directory for Agents supplying services

Replication and convergent boradcast technique ensures no single point of
failure

Designed to scale-up to a system with up to 10,000 nodes

WAN support

Administration and management of software configuration cn be performed
with SNMP standard protocols

» Cross platform / Architecture support

- X.208/x.209 (ASN.1/ BER) used for all Inter-Agent messages. This provides
architecture-independent messag syntax and encoding

- ASN.1 complier auto-generates code to perform message manipulation

» Efficient use of network
- TCP connections used for large object transfer

- UDP pockets for small messages



Figure 12

InterStage as a base for Generic Subsystems and Generic Serivces

Application
Enterprise- Enterprise- Enterprise-
specific specific specific
class class class
library — | library — | library
/
LEGACY
WORKFLOW MM / SYSTEM/ DOCUMENT
DEFINITION FORM DEFINITION
TOOLS TOOLKIT DATABASE MANAGEMENT
GATEWAY
DOCUMENT
OBJECT WORKFLOW | hooymENT AND DOCUMENT
STORAGE MANAGEMENT
N ERNEL KERNEL CAPTURE IMAGE OUTPUT
PROCESSING

INTERSTAGE DISTRIBUTED APPLICATION DEVELOPMENT TOOLKIT

0S/2

MAC/OS

WINDOWS/
WINDOWS/NT




